
http://www.mka-soft.com

Learning VB.Net

Tutorial 19 – Classes and Inheritance

Hello everyone… welcome to vb.net tutorials. These are going to

be very basic tutorials about using the language to create simple

applications, hope you enjoy it. If you have any notes about it,

please send them to notes@mka-soft.com I will be happy to

answer them. Finally if you find these tutorials are useful, it would

be nice from you to send a small donation via PayPal to

donation@mka-soft.com.

Tutorial posted on 2010-May-17.

http://www.mka-soft.com

Classes and Inheritance

 In the previous two tutorials, the definition of classes, methods, and their

initialization is discussed. This tutorial is about how to perform inheritance. The same

example used in the last tutorial is being used here as well.

In many cases you want to take an existing class and extend its functionality. In our

previous example the class ContactList has ContatArr() which is an array used to store

the contacts, and the counter C which is used to tell how many elements we are using in

the array. It also has methods to add a contact, remove a contact, and display the

contacts in a DataGridView. What we want here is to create a new class that has the

same methods and properties as ContactList, and also has a Sort method which allows

you to sort the contacts by name.

To do so simply add another class to your project, and call it ContactsWithSort . The

first line of code in the class should be:

 Inherits ContactList

The keyword Inherits here tells the complier that the class has behave in the same way

as ContactList. In other words it is like copying the code of ContactList and pasting it to

the new class (for now you can think about it like this, it makes things easier).

Now let us try to add the new method to the class…

 Public Sub Sort() ' this class has another method called sort.
 Dim I As Integer
 Dim F As Boolean
 Dim Contact As ContactInfo

 Do
 F = False

 For I = 0 To C - 2
 If ContactArr(I).Name > ContactArr(I + 1).Name Then
 F = True
 Contact = ContactArr(I)
 ContactArr(I) = ContactArr(I + 1)
 ContactArr(I + 1) = Contact
 End If
 Next

 Loop While F

 End Sub

Now if you try to run the program (even though you did not use the Sort method or the

new class itself) you will get an error. The error is for using C and ContactArr. The error

says that these variables are private. This brings up the issue of the accessibility of

variables.

When you define a variable in a class you can set its accessibility level to the following:

http://www.mka-soft.com

Public : this means that the variable can be access inside or outside the class.

Private: this means that the variable can be accessed only inside the original class it is

created in.

Protected: this means that the variable can be accessed only in the class and all

inherited classes.

So let us check this using the following example:

 Public Class test
 Dim A As Integer
 Private B As Integer
 Public C As Integer
 Protected D As Integer

 Public Sub SetA(ByVal I As Integer)
 A = I
 End Sub

 Public Sub SetB(ByVal I As Integer)
 B = I
 End Sub

 Public Sub SetC(ByVal I As Integer)
 C = I
 End Sub

 Public Sub SetD(ByVal I As Integer)
 D = I
 End Sub

 End Class

In the example, A is treated as private. So if you add this method to the class:

 Public Sub SetA(ByVal I As Integer)
 A = I
 End Sub

It works perfectly fine. However, if you add the following code into a form or module:

 Dim Q As New test
 Q.A = 10

This would trigger an error because A should only be accessed from within the class.

Now let us check B which is private. If this is a method in the class, then it works.

 Public Sub SetB(ByVal I As Integer)
 B = I
 End Sub

But if you add the following code into any place other than the class test, you get an

error.

 Dim Q As New test
 Q.B = 10

So it works exactly like private. Next let us try to work with C which is Public.

http://www.mka-soft.com

 Public Sub SetC(ByVal I As Integer)
 C = I
 End Sub

This obviously works fine since it is in the same class (test). If you write the following

code in any other place other than the class test, then it works perfectly fine.

 Dim Q As New test
 Q.C = 10

This works because the variable C here is public which means it can be accessed from

any other place. Now let us check the last one D which is protected. The method within

the class again has no problem

 Public Sub SetD(ByVal I As Integer)
 D = I
 End Sub

If you want to access the variable D from outside the class it is treated like private, but it

has some special treatment, which we will see later.

 Dim Q As New test
 Q.D = 10

So this triggers an error. Now let us go back to our example and see why we can’t

access the variable C and ContactArr. We used (Dim) for these two which means they

are treated like private. As we have seen before that private variables in a class can not

be accessed from outside the class itself. So we want to make them accessible. Making

these variables public means that they will be accessed from any part of the project,

which is not a good idea. If you change these variables’ visibility to protected, then the

classes inherited from them will be able to access these. An access from any other

location is denied. To test this try to create a class test2 inherited from test.

 Public Class test2
 Inherits test

 Public Sub SetAll()
 A = 10 ' error
 B = 20 ' error
 C = 30 ' correct
 D = 40 ' correct
 End Sub
 End Class

Here A is not accessible in this class simply because it is private in the original class. B is

the same so it causes the same problem. C is public in class test, so it is accessible here

and everywhere else. D is protected so it is accessible in test2. The table below

summarizes how these work:

http://www.mka-soft.com

Accessibility Base Class Inherited Class Outside the Class

Dim Accessible Not Accessible Not Accessible

Private Accessible Not Accessible Not Accessible

Public Accessible Accessible Accessible

Protected Accessible Accessible Not Accessible

So going back to our example, set each of C and ContactArr in ContactList class to

protected. You will see the code now is correct.

Next, modify the object in the form to use the new class:

 Dim OBJ As ContactsWithSort

And modify the code of initialization of OBJ in the load event of the form:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 OBJ = New ContactsWithSort()
 OBJ.FillDGV(DGV)
 End Sub

Finally, add a menu item to sort the contacts, and write the following in the event

handler:

 OBJ.sort()
 OBJ.FillDGV(DGV)

Run the code check it out. Below is the full code of the ContactList class:

Public Class ContactList

 Protected ContactArr() As ContactInfo ' the array of object, all elements points to nothi ng
 Protected C As Integer ' the number of objects in the array

 Public Sub AddNewContact()
 C = C + 1 ' the number of objects increases by one
 ContactArr(C - 1) = New ContactInfo ' create the object
 ContactArr(C - 1).ReadContactInfo() ' read the information
 End Sub

 Public Sub RemoveContact(ByVal Name As String)
 ' search for the contact
 For I = 0 To C - 1
 If ContactArr(I).Name = Name Then

 ' next remove the contact from the array by shiftin g the other objects
 Dim J As Integer
 For J = I + 1 To 999
 ContactArr(J - 1) = ContactArr(J)
 Next

 ' the number of elements reduces by one
 C = C - 1

 ' exit the block
 Exit Sub
 End If
 Next

 End Sub

 Public Sub FillDGV(ByVal DGV As DataGridView)

http://www.mka-soft.com

 ' clear the data grid view
 DGV.Rows.Clear()

 Dim I As Integer

 ' loop over all the contacts
 For I = 0 To C - 1
 ' add contact information
 DGV.Rows.Add(ContactArr(I).Name, Contac tArr(I).Address, ContactArr(I).Tel)
 Next

 End Sub

 Public Sub New()
 ' first constructor, set the number of elements to zero, and set array size to 1000
 C = 0
 ReDim ContactArr(0 To 999)
 End Sub

 Public Sub New(ByVal NoOfReads As Integer)
 ' second constructor, set number of elements to zer o, and set array size to 1000
 C = 0
 ReDim ContactArr(0 To 999)

 ' add the contacts
 Dim I As Integer
 For I = 0 To NoOfReads - 1
 Me.AddNewContact()
 Next
 End Sub

 Protected Overrides Sub Finalize()
 ' this is how to terminate a class
 Dim I As Integer
 For I = 0 To C - 1
 ContactArr(I) = Nothing
 Next

 MyBase.Finalize()
 End Sub
End Class

Next is the code for the ContactsWithSort class

Public Class ContactsWithSort

 Inherits ContactList

' this tells the compiler that this class has the s ame behaviour of ContactList

 Public Sub Sort() ' this class has another method called sort.
 Dim I As Integer
 Dim F As Boolean
 Dim Contact As ContactInfo

 Do
 F = False

 For I = 0 To C - 2
 If ContactArr(I).Name > ContactArr(I + 1).Name Then
 F = True
 Contact = ContactArr(I)
 ContactArr(I) = ContactArr(I + 1)
 ContactArr(I + 1) = Contact
 End If
 Next

 Loop While F

 End Sub

End Class

And finally the code of the form:

http://www.mka-soft.com

Public Class Form1

 Dim OBJ As ContactsWithSort

 Private Sub AddToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles AddToolStripMenuItem.Click
 OBJ.AddNewContact()
 OBJ.FillDGV(DGV)
 End Sub

 Private Sub RemoveToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RemoveToolStripMenuItem.Click
 ' check if no rows are selected, if so no need to e xecute further code, just exit the
subroutine
 If DGV.SelectedRows.Count = 0 Then
 Exit Sub
 End If

 Dim N As String

 ' get the selected name, it is the first column (ce ll zero)
 N = DGV.SelectedRows(0).Cells(0).Value

 OBJ.RemoveContact(N)
 OBJ.FillDGV(DGV)
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 OBJ = New ContactsWithSort()
 OBJ.FillDGV(DGV)
 End Sub

 Private Sub SortToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SortToolStripMenuItem.Click
 OBJ.sort()
 OBJ.FillDGV(DGV)
 End Sub
End Class

The rest of the files don’t need modification, they are the same. So as you can see

inheritance allows us to extend the functionality of an existing class, and add some

features to them. So this is all for today. If you need the source file, you can get it from

the web site. If you have notes about this tutorial, email me at: notes@mka-soft.com.

Thanks.

mkaatr

