
http://www.mka-soft.com

Learning VB.Net

Tutorial 18 – Classes Initialization and Finalization

Hello everyone… welcome to vb.net tutorials. These are going to

be very basic tutorials about using the language to create simple

applications, hope you enjoy it. If you have any notes about it,

please send them to notes@mka-soft.com I will be happy to

answer them. Finally if you find these tutorials are useful, it would

be nice from you to send a small donation via PayPal to

donation@mka-soft.com.

Tutorial posted on 2010-May-09.

http://www.mka-soft.com

Classes Initialization and Finalization

 The previous tutorial showed how to create a class, and how to add methods,

and attributes to it. Today we see how to initialize the objects using the New method.

First open the previous class example “testclass”. Add a new class to the project, and

call it: ContactList.

This class will be used to store the contact information in the array and manage it . In

the class file add the following code:

 Dim ContactArr() As ContactInfo ' the array of object, all elements points to nothi ng
 Dim C As Integer ' the number of objects in the array

These are used to store the contact information, and the number of elements in the

array used. Next add the following method:

 Public Sub AddNewContact()
 C = C + 1 ' the number of objects increases by one
 ContactArr(C - 1) = New ContactInfo ' create the object
 ContactArr(C - 1).ReadContactInfo() ' read the information
 End Sub

This one adds a new contact, then add:

 Public Sub RemoveContact(ByVal Name As String)
 ' search for the contact
 For I = 0 To C - 1
 If ContactArr(I).Name = Name Then

 ' next remove the contact from the array by shiftin g the other objects
 Dim J As Integer
 For J = I + 1 To 999
 ContactArr(J - 1) = ContactArr(J)
 Next

 ' the number of elements reduces by one
 C = C - 1

 ' exit the block
 Exit Sub
 End If
 Next

 End Sub

Which will remove a contact based on name. Also, add the following method to fill the

data grid view:

 Public Sub FillDGV(ByVal DGV As DataGridView)
 ' clear the data grid view
 DGV.Rows.Clear()

 Dim I As Integer

 ' loop over all the contacts
 For I = 0 To C - 1
 ' add contact information
 DGV.Rows.Add(ContactArr(I).Name, Contac tArr(I).Address, ContactArr(I).Tel)
 Next

 End Sub

http://www.mka-soft.com

Now comes the constructor, write down the following:

 Public Sub New()
 ' first constructor, set the number of elements to zero, and set array size to 1000
 C = 0
 ReDim ContactArr(0 To 999)
 End Sub

The name of this method is: New, and by default, when the compiler sees this, it knows

that this method should be called automatically as soon as the object is created. So

basically this method tells the computer to set the value of the counter C to zero, and

make the array capable of storing 1000 objects as soon as the ContactList object is

created. To test this, Go to the form, and modify the code to be like this:

Public Class Form1

 Dim OBJ As ContactList

 Private Sub AddToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles AddToolStripMenuItem.Click

 OBJ.AddNewContact()
 OBJ.FillDGV(DGV)

 End Sub

 Private Sub RemoveToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RemoveToolStripMenuItem.Click

 ' check if no rows are selected, if so no need to e xecute further code, exit the subroutine
 If DGV.SelectedRows.Count = 0 Then
 Exit Sub
 End If

 Dim N As String

 ' get the selected name, it is the first column (ce ll zero)
 N = DGV.SelectedRows(0).Cells(0).Value

 OBJ.RemoveContact(N)
 OBJ.FillDGV(DGV)

 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

 OBJ = New ContactList()
 OBJ.FillDGV(DGV)

 End Sub

End Class

Check out the code, and specifically the Form1_Load subroutine. When the line:

 OBJ = New ContactList()

is executed, the New subroutine is called directly. You don’t have to do the call yourself,

it is automatic. Also the constructor is executed only once.

http://www.mka-soft.com

So basically the constructor helps you prepare your object before using it. To make sure

the constructor is being called, try to add a MsgBox call in the New method and see how

it works.

You can actually create a number of different constructors, and later on you can choose

which one to use based on the parameters you pass to it. For example, let us add

another constructor to our class:

 Public Sub New(ByVal NoOfReads As Integer)
 ' second constructor, set number of elements to zer o, and set array size to 1000
 C = 0
 ReDim ContactArr(0 To 999)

 ' add the contacts
 Dim I As Integer
 For I = 0 To NoOfReads - 1
 Me.AddNewContact()
 Next
 End Sub

This constructor allows you to read a number of contacts as soon as you initialize the

object without the need of going to the menu and select add contact. In order to call it,

simply use it like this:

 OBJ = New ContactList(3)

When the compiler sees the parameters (3), it searches for the constructor that accepts

an integer as a parameter and calls it. You can create as many constructors as you need.

The important thing is that the constructor name is always New, and each constructor

should have different parameters (either in number or in data type to help the compiler

distinguish them). Try the new constructor, and see how it works.

The last thing is the destructor. A destructor or finalizer is a method that is called when

an object is destroyed, i.e. its resources are returned into memory. Try adding the code

below:

 Protected Overrides Sub Finalize()
 ' this is how to terminate a class
 Dim I As Integer
 For I = 0 To C - 1
 ContactArr(I) = Nothing
 Next

 MyBase.Finalize()
 End Sub

Don’t worry about the MyBase, or Protected, or the Overrides keywords for now, we

will check these in later tutorials, but for now, just keep in mind that this one is being

called when the object is destroyed. As you can see what we are doing here is we are

looping over all the contactinfo objects and set them to nothing (which means we don’t

http://www.mka-soft.com

need them anymore, and we want them to be destroyed). Then after that we destroy

the object. Try this code out, and see what happens when you place an MsgBox in this

method.

So this is all for today. If you need the source file, you can get it from the web site. If you

have notes about this tutorial, email me at: notes@mka-soft.com.

Thanks.

mkaatr

