
http://www.mka-soft.com

Learning VB.Net

Tutorial 17 – Classes

Hello everyone… welcome to vb.net tutorials. These are going to

be very basic tutorials about using the language to create simple

applications, hope you enjoy it. If you have any notes about it,

please send them to notes@mka-soft.com I will be happy to

answer them. Finally if you find these tutorials are useful, it would

be nice from you to send a small donation via PayPal to

donation@mka-soft.com.

Tutorial posted on 2010-May-03.

http://www.mka-soft.com

Classes

 Previously we saw how to work with structures, and we examined how we can

combine related information into one logical unit. Classes are very similar to structures,

except that they allow you to combine the functions and subroutines that work on your

information as well. It also has many other useful features that allows you to create and

use frameworks to reuse the code.

To start understand classes we are going to develop a simple address book application.

The application will allow you to store user information (name, address and telephone

number).

Start visual studio, and create a new project.

First thing we are going to do is to create a simple class that will describe the

information for each contact. Usually each class is placed in a separate file. The process

is similar to adding module, or adding another form to your project. Right click your

project->Add->Class

http://www.mka-soft.com

Next provide the name of the class (ContactInfo)

http://www.mka-soft.com

Next you will see the following:

Now you should start writing the code for your class. The contact for each person should

include person Name, Address and Telephone, therefore you define three variables as

shown below:

http://www.mka-soft.com

To test this go to the form and place a button

http://www.mka-soft.com

Next try to add the following to the code of the button

First you define a variable of type ContactInfo in a way similar to what you used to with

structures, however, when you want to access the variables of the class you will find

that the editor does not list them. Actually even if you write them manually you won’t

be able to run the program. This is because the variables within the class are protected

from access outside the class code. This helps hiding complex code and the variables

you don’t want to be accessed by mistake.

Now to make any variable accessible just change the Dim keyword in front of the

variable to Public. This will grant this variable public access from any code within the

project.

http://www.mka-soft.com

Now if you try to access the name property, you will see that the editor can detect that,

and the property is listed when you press the (.) after the variable name.

http://www.mka-soft.com

Make the Address and Tel variables within the class public similar to the way below:

Next add the following code to the event handler of the Button1

http://www.mka-soft.com

Now your code is completely correct from syntax point of view, however it will not run

correctly. If you run the code and then hit the button, then you get the following error:

This brings us to the second difference of class from structure. The variable A in the

example is just a pointer to where the actual data is stored in memory, and there is not

memory resources allocated to store the name, address and tel values for A. This is why

you are getting the error.

To clarify things more, Let us say we have a structure to store exactly the same

information:

 Structure ContactInfoStruct
 Dim Name As String
 Dim Address As String
 Dim Tel As String
 End Structure

When you write

 Dim V As ContactInfoStruct

Then what happens in memory is the following:

http://www.mka-soft.com

The variable V is allocated all the required memory resources. Unlike A,

where the actual data are located

allocated, then A cannot point to them, and this i

write:

 Dim A As ContactInfo

This creates a variable that points to no actual object

But if you write:

 Dim A As New ContactInfo

Then an object is created, and A poi

Now use the New keyword, and test the code, you will see it runs without an error.

The variable V is allocated all the required memory resources. Unlike A, it only points to

located in memory. So if there are not memory

point to them, and this is why you get the error.

ContactInfo

a variable that points to no actual object:

ContactInfo

is created, and A points to it:

Now use the New keyword, and test the code, you will see it runs without an error.

it only points to

memory resources

s why you get the error. Now if you

Now use the New keyword, and test the code, you will see it runs without an error.

http://www.mka-soft.com

 Dim A As New ContactInfo

Another method to do it is by using two steps:

 Dim A As ContactInfo
 A = New ContactInfo

This will have exactly the same effect. It is up to you to select which way to use.

However in some cases you need to use the second format specially if you want to

create and destroy the object linked by the same variable multiple times.

Now go to the class file and write down the following:

 Public Sub SetContactInfo(ByVal NME As String, ByVal Addr As String, ByVal Telephone As String)
 Name = NME
 Address = Addr
 Tel = Telephone
 End Sub

This subroutine allows you to fill the variables in the class. It is a normal subroutine

except for the Public keyword placed before it. This means that you can call this

subroutine form any other code block. It is similar to using Public with variables. This is

useful if you want to hide complex functions and subroutines from outside access and

provide small number of function to use with your class. Now to test this subroutine,

Modify the Button1 event handler to be like this:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim A As ContactInfo
 A = New ContactInfo
 A.SetContactInfo("Smith", "UK", "123456")
 End Sub

As you can see it is used the same way variables are accessed. You write the variable

name (in this case A), followed by dot (.), followed by the function/subroutine

(SetContactInfo). This is interpreted as call the function (SetContactInfo) and use the

fields/attributes of A. If you the subroutine code:

 Name = NME
 Address = Addr
 Tel = Telephone

 This is translated to:

 A.Name = NME
 A.Address = Addr
 A.Tel = Telephone

 Now if you are using another object:

 Dim B As ContactInfo
 B = New ContactInfo
 B.SetContactInfo("Michel", "US", "123456")

The subroutine call will be interpreted as:

 B.Name = NME
 B.Address = Addr
 B.Tel = Telephone

and so on.

http://www.mka-soft.com

Now write down the following code in the event handler and run it:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim A As New ContactInfo
 Dim B As New ContactInfo

 A.SetContactInfo("Smith", "UK", "123456")
 B.SetContactInfo("Michel", "US", "456789")

 MsgBox(A.Name)
 MsgBox(A.Address)
 MsgBox(A.Tel)

 MsgBox(B.Name)
 MsgBox(B.Address)
 MsgBox(B.Tel)

 End Sub

As you can see the code is easier to understand, and you don’t have to fill the

fields/attributes of the contact one by one. Now we will improve the way we enter the

data by reading the information from a dialog. Right click your project and select Add-

>Windows Form

Select Dialog, and assign the name ReadContactInfoDialog:

http://www.mka-soft.com

Then select Add, the dialog design appears.

Add three labels, and three text boxes, and make the dialog look like this:

http://www.mka-soft.com

If you check the code of the OK & Cancel buttons, you will find that it is already written.

This code is the default behavior for a dialog, so leave it as it is.

http://www.mka-soft.com

Next we will add a subroutine to read contact information. Go to the class file and write

the following:

 Public Sub ReadContactInfo()

 ReadContactInfoDialog.TextBox1.Text = ""
 ReadContactInfoDialog.TextBox2.Text = ""
 ReadContactInfoDialog.TextBox3.Text = ""

 If ReadContactInfoDialog.ShowDialog = DialogResult.Cancel Then
 Exit Sub
 End If

 Name = ReadContactInfoDialog.TextBox1.Text
 Address = ReadContactInfoDialog.TextBox2.Text
 Tel = ReadContactInfoDialog.TextBox3.Text

 End Sub

The first part clears the text boxes from all previous input. The if statement part checks

if the user hit the cancel button, and exits the subroutine if so. If not, the execution

continues to the last part, there the content of the text boxes are copied into the

variables of the class. To test it modify the code of the Button1 for the main window

(Form1) to be like this:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim A As New ContactInfo
 Dim B As New ContactInfo

 A.ReadContactInfo()
 B.ReadContactInfo()

 MsgBox(A.Name)
 MsgBox(A.Address)
 MsgBox(A.Tel)

 MsgBox(B.Name)
 MsgBox(B.Address)
 MsgBox(B.Tel)

 End Sub

Now run the code, and hit the button, you should see something like this:

http://www.mka-soft.com

Enter the information and hit OK. Another window appears, fill the information of the

second contact and hit OK. After that you should be able to see the details of each

contacts appear in separate message boxes.

Instead of using the message box to display the contact information, we will create

another dialog to display such info. Just Add another dialog to the project as we did

before and name it DisplayContactInfo. And make it look like the following:

http://www.mka-soft.com

Make sure to only remove the cancel button, and keep the OK button there. Also make

sure that all textboxes are read only. Go next to the class file and add the following

subroutine:

 Public Sub DisplayContact()
 DisplayContactInfo.TextBox1.Text = Name
 DisplayContactInfo.TextBox2.Text = Address
 DisplayContactInfo.TextBox3.Text = Tel
 DisplayContactInfo.ShowDialog()
 End Sub

This is much smaller code since it just displays the information of the object. To test

that, update the code of Button1 in Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim A As New ContactInfo
 Dim B As New ContactInfo

 A.ReadContactInfo()
 B.ReadContactInfo()

 A.DisplayContact()
 B.DisplayContact()

 End Sub

Run the code and you will see that you can display the information in the form:

http://www.mka-soft.com

As you can see the code in Button1_Click subroutine is very straightforward and easy to

understand. You don’t have to worry about the internal details of the class. All you need

is to break your problem/your program into a number of logical units/classes each has

its own data and functions, and then you combine them together to solve the main

problem. Classes makes such thing easier to do.

Now our simple class is almost ready, so we are starting to create the main user

interface now. Remove the Button1 from the Form1 window and add a menu strip

control. Create the menu entries shown below:

http://www.mka-soft.com

Also add a data grid view, and call it DGV, add three columns to it (one for name, one for

address, and one for tel). Disable adding, editing and deletion of rows. You should have

something similar to the following:

Double click the form and the editor opens, add the following code after Class Form1

 Dim ContactList(0 To 999) As ContactInfo
 Dim C As Integer = 0

http://www.mka-soft.com

The ContactList is an array of type contact info. Each element of this array can point to

an object of type ContactInfo, but when the array is created it is pointing to Nothing. C is

used to tell how many objects are there in the array. When the program starts the

number of elements is Zero.

Next add the following code to the Add menu item:

 Private Sub AddToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles AddToolStripMenuItem.Click
 C = C + 1
 ContactList(C - 1) = New ContactInfo
 ContactList(C - 1).ReadContactInfo()
 DGV.Rows.Add(ContactList(C - 1).Name, ContactList(C - 1).Address, ContactList(C - 1).Tel)
 End Sub

This subroutine will add new contact, read the information of that contact, and then

update the display. Try this out and you should be getting something like this:

Now the remove code should be like this:

 Private Sub RemoveToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RemoveToolStripMenuItem.Click
 If DGV.SelectedRows.Count = 0 Then
 Exit Sub
 End If

 Dim I As Integer
 Dim N As String
 N = DGV.SelectedRows(0).Cells(0).Value
 For I = 0 To C - 1
 If ContactList(I).Name = N Then
 DGV.Rows.Remove(DGV.SelectedRows(0))
 Dim J As Integer
 For J = I + 1 To 999

http://www.mka-soft.com

 ContactList(J - 1) = ContactList(J)
 Next
 C = C - 1
 Exit Sub
 End If
 Next
 End Sub

Notice that we are removing the contact from the display and from the array itself. Try

adding and removing few contacts and see how it works. So this concludes the tutorial

for today. There will be more about classes in the next tutorial. However there is some

important things that you must keep in mind. A variable of a class is a pointer only. A

good example to understand this is if you write the following code:

 Dim A As New ContactInfo
 Dim B As ContactInfo
 A.Name = "Smith"
 B = A
 B.Name = "John"

In the end of execution of such code, both A and B will have John as the name value.

Any change to A or B will affect the other one because simply they both point to the

same location in memory (point to the same object in memory). But if A & B are

structures:

 Dim A As ContactInfoStruct
 Dim B As ContactInfoStruct
 A.Name = "Smith"
 B = A
 B.Name = "John"

Then A will be independent of B and changes in A will not affect B and vice versa.

So this is all for today. If you need the source file, you can get it from the web site. If you

have notes about this tutorial, email me at: notes@mka-soft.com.

Thanks.

mkaatr

