
http://www.mka-soft.com

Learning VB.Net

Tutorial 16 – Modules

Hello everyone… welcome to vb.net tutorials. These are going to

be very basic tutorials about using the language to create simple

applications, hope you enjoy it. If you have any notes about it,

please send them to notes@mka-soft.com I will be happy to

answer them. Finally if you find these tutorials are useful, it would

be nice from you to send a small donation via PayPal to

donation@mka-soft.com.

Tutorial posted on 2010-March-27.

http://www.mka-soft.com

Modules

 In vb.net you can write place your code in different files. Some of these files are

called modules. A module is a file that contains vb code only (i.e. functions, structures,

subroutines…). It does not include GUI like buttons, lists, menus …etc. Now to add a

module to your project select project then add module

After that you provide module name:

http://www.mka-soft.com

You can see the module file is added into your project. The code you see is:

Module General

End Module

Now you can write the functions and subroutines in this module. For example:

Module General

 ' define the sales structure
 Public Structure SalesStruct
 Dim Item As String
 Dim Count As Integer
 Dim Price As Single
 Dim Total As Single
 Dim TheDate As String
 Dim Flg As Boolean
 End Structure
End Module

So you might be wondering what difference does modules make in a program? Well

modules helps you place related functions, subroutines, and other coding that you make

in one place, so that it becomes easier for you to find, and easier for you to work with,

and make it possible for other parts of your program to use the code.

To illustrate this consider that you have a two or three forms that require some sort

operation. Instead of writing the code in one form which makes it part of that form, you

place the code in a module, and sort function/subroutine becomes available to all the

forms. Later on you can even take the code of the sort operation and add that to

another project and you will find it works without modification (assuming the code is

done correctly).

http://www.mka-soft.com

Now the following example (the sales vb project included on the web site). This project

contains one module:

The idea of this project is to add a number of items you were able to sale, and later on

you could find the total of sales, save or load the files.

If you check the module you will find the code:

 ' define the sales structure
 Public Structure SalesStruct
 Dim Item As String
 Dim Count As Integer
 Dim Price As Single
 Dim Total As Single
 Dim TheDate As String
 Dim Flg As Boolean
 End Structure

Which defines the main structure, then

 ' define the main array to store sales info
 Public Sales() As SalesStruct
 Public SalesCount As Integer

Which defines the array and its number of elements

 ' read info
 Public Function ReadSalesInfo() As SalesStruct
 AddSale.TextBox1.Text = ""
 AddSale.TextBox2.Text = ""
 AddSale.TextBox3.Text = ""
 AddSale.TextBox4.Text = ""

http://www.mka-soft.com

 AddSale.TextBox5.Text = ""
 If AddSale.ShowDialog = DialogResult.Cancel Then
 Dim dummy As SalesStruct
 dummy.Flg = False
 Return dummy
 End If
 Dim S As SalesStruct
 S.Item = AddSale.TextBox1.Text
 S.Count = AddSale.TextBox2.Text
 S.Price = AddSale.TextBox3.Text
 S.Total = AddSale.TextBox4.Text
 S.TheDate = AddSale.TextBox5.Text
 S.Flg = True
 Return S
 End Function

This function uses a dialog called AddSale to read the information of an item. The first

part just clears the text boxes on the form/dialog, and the if statement part shows the

window and tells you if the user canceled the data entry, and the last part fills the

structure from the form and returns the result.

 ' display the information of the strucutre in the d ata grid view
 Public Sub DisplayArray(ByVal Arr() As SalesStruct, ByVal DGV As DataGridView)
 DGV.Rows.Clear()
 Dim I As Integer
 For I = 0 To Arr.Length - 1
 DGV.Rows.Add(Arr(I).Item, Arr(I).Count, Arr(I).Price, Arr(I).Total, Arr(I).TheDate)
 Next
 End Sub

This part displays the information of the array in a data grid view

 ' remove an item from array based on item name
 Public Sub RemoveItemBasedOnName(ByVal Name As String , ByRef Arr() As SalesStruct, ByRef IC As
Integer)
 Dim I As Integer
 Dim J As Integer
 For I = 0 To Arr.Length - 1
 If Name = Arr(I).Item Then
 For J = I + 1 To Arr.Length - 1
 Arr(J - 1) = Arr(J)
 Next
 ReDim Preserve Arr(0 To Arr.Length - 2)
 IC = IC - 1
 Exit Sub
 End If
 Next
 End Sub

This one removes an item based on its name

 ' save the sales info
 Public Sub SaveFile(ByVal FileName As String , ByVal Arr() As SalesStruct)
 FileSystem.FileOpen(1, FileName, OpenMode.O utput, OpenAccess.Write)
 Dim I As Integer
 FileSystem.PrintLine(1, Arr.Length)
 For I = 0 To Arr.Length - 1
 FileSystem.PrintLine(1, Arr(I).Item)
 FileSystem.PrintLine(1, Arr(I).Price)
 FileSystem.PrintLine(1, Arr(I).TheDate)
 FileSystem.PrintLine(1, Arr(I).Total)
 Next
 FileSystem.FileClose(1)
 End Sub

 ' load the file info
 Public Sub LoadFile(ByVal FileName As String , ByRef Arr() As SalesStruct, ByRef IC As Integer)

http://www.mka-soft.com

 FileSystem.FileOpen(1, FileName, OpenMode.I nput, OpenAccess.Read)
 Dim I As Integer
 IC = FileSystem.LineInput(1)
 ReDim Arr(0 To IC - 1)
 For I = 0 To Arr.Length - 1
 Arr(I).Item = FileSystem.LineInput(1)
 Arr(I).Price = FileSystem.LineInput(1)
 Arr(I).TheDate = FileSystem.LineInput(1)
 Arr(I).Total = FileSystem.LineInput(1)
 Next
 FileSystem.FileClose(1)

 End Sub

These two saves and load the information

 ' get total sum
 Public Function GetTotalSales(ByVal Arr() As SalesStruct) As Single
 Dim S As Single = 0
 Dim I As Integer
 For I = 0 To Arr.Length - 1
 S += Arr(I).Total
 Next
 Return S
 End Function

This last one finds the total. As you can see there is almost no difference in the code

that is inside the module. It is exactly the same as the code you use in forms. Now if you

open the main form of the application

This one contains a menu strip and a data grid view, with open files dialog and save file

dialog. If you check the code of the form

 Private Sub AddToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles AddToolStripMenuItem.Click
 Dim SR As SalesStruct
 SR = General.ReadSalesInfo

http://www.mka-soft.com

 If SR.Flg Then
 SalesCount = SalesCount + 1
 ReDim Preserve Sales(0 To SalesCount - 1)
 Sales(SalesCount - 1) = SR
 DisplayArray(Sales, DGV)
 End If
 End Sub

 Private Sub RemoveSaleToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RemoveSaleToolStripMenuItem.Click
 If DGV.SelectedRows.Count = 0 Then
 Exit Sub
 End If
 RemoveItemBasedOnName(DGV.SelectedRows.Item (0).Cells(0).Value, Sales, SalesCount)
 DisplayArray(Sales, DGV)

 End Sub

 Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ExitToolStripMenuItem.Click
 End
 End Sub

 Private Sub SaToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles SaToolStripMenuItem.Click
 SFD.Filter = "*.txt|*.txt"
 If SFD.ShowDialog = Windows.Forms.DialogResult.Cancel Then
 Exit Sub
 End If
 SaveFile(SFD.FileName, Sales)
 End Sub

 Private Sub LoadToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LoadToolStripMenuItem.Click
 If OFD.ShowDialog = Windows.Forms.DialogResult.Cancel Then
 Exit Sub
 End If
 LoadFile(OFD.FileName, Sales, SalesCount)
 DisplayArray(Sales, DGV)
 End Sub

 Private Sub FindTotalToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FindTotalToolStripMenuItem.Click
 MsgBox("the total sales:" & GetTotalSales(Sales).ToString)
 End Sub

You can see the code is much smaller here, because it is just a call to the code in the

module. In fact later on if you want to modify the user interface, the code of the

module is not affected. Also since the code is much smaller, it is easier for other

programmers to understand you code and update it.

So to sum things up, modules:

1- Are vb files

2- Used to store functions/subroutines, and other vb coding

3- Makes your program easier to maintin

4- Makes your program easier to understand

5- You can use/not use them, it is up to you

6- You can use any number of modules in a vb project

7- Make it easy to port your code to another application

http://www.mka-soft.com

8- Helps you isolate the interface design from program logic.

So this is all for today. If you need the source file, you can get it from the web site. If you

have notes about this tutorial, email me at: notes@mka-soft.com.

Thanks.

mkaatr

